Tutorial 6 : Selected problems of Assignment 6

Leon Li

16/10/2019

Notortion Throughout the tutorial, (X,d) is a (not necessarily complete)

metric space with metric d. E, F = X are nonempty subsets.

(Q2) (Ex. 6, Q5) Recall the distance function to E,
$$P_E: (X,d) \rightarrow R$$

defined as $P_E(x) = d(x, E) := \inf_{x \in E} \{d(x, z)\}$. (See Lecture note §2.2)
Show that $\overline{E} = \{x \in X \mid d(x, E) = 0\}$.
Sol) Let $A = \{x \in X \mid d(x, E) = 0\}$. Showing A is closed:
For any sequence $(Xn) \subseteq A$ such that $\lim_{n \to \infty} X_n = X$, by continuity of P_E ,
 $d(x, E) = \lim_{n \to \infty} d(x_n, E) = 0$ (Since $X_n \in E$). $\therefore x \in A$, hence A is closed
[\subseteq] Note that $E \subseteq A$. As A is closed, $\overline{E} \subseteq A$.
[\ge] Given $x \in A$. for any $n \in N$, $\inf_{n \neq \infty} \{d(x, z)\} < \lim_{n \to \infty} T_n = X$, i.e. $x \in E$
such that $d(x, z_n) < \lim_{n \to \infty} d(x, z_n) = 0$. Hence $\lim_{n \to \infty} Z_n = X$, i.e. $x \in E$

(Q3) (Ex 6, Q6, 7) Assume $E \neq \phi$ (a) Show that $E = X \setminus \overline{(X \setminus E)}$ (b) Hence, show that È is the largest open set contained in E, i.e. ① É is an open subset of E. (ii) For any open subset $G \subseteq E$, then $G \subseteq E$. S_0 (a) [\subseteq] Given $z \in \check{E}$. Hence there exists P>0 such that $B_p(z) \in E$. Suppose on the contrary ZEXIE, then there exists a sequence (Xn) SXIE such that lim Xn = Z. Hence there exists NEIN such that d(Xn, Z)<p $\therefore X_N \in B_p(z) \subseteq E$. This is a contradiction. $\therefore z \in X \setminus \overline{(X \setminus E)}$. [] Given $y \in X \setminus (X \setminus E)$, suppose on the contrary $y \notin \check{E}$. Then for my NEN, B: (Y) & E. Hence there exists En EB: (Y) such that Zn & E ... I'm Zn = Y, hence Y E XE, contradiction (b) (i) Since $\overline{X \setminus E}$ is closed, $\overline{E} = X \setminus (\overline{X \setminus E})$ is open. (ii) Given open GEE ~ X\G = X\E~ X\G 2 X\E \sim G = X \ (X \ G) = X \ ($\overline{X \setminus G}$) \subseteq X \ ($\overline{X \setminus E}$) = $\mathring{E} \sim$ G $\subseteq \mathring{E}$. (since X G is clued)